Conformal Coatings Modern Challenges Demand New Solutions

A New Generation of Conformal Coatings

Introduction

Today's Presenters

- Robert Gelosa · Sales Engineer
- Maurice LeBlon · Sales Manager

To learn more please go to: aitechnology.com/products/conformal-coatings

Visit us on the web: **www.aitechnology.com** Send us an email**: ait@aitechnology.com** Give us a call: **1-(609)-799-9388**

Introduction Topics

Rising Challenges for Conformal Coating

Conformal	Hydrophobicity
	Water Absorption
	Moisture Barrier
Coating	Gas Diffusion
Attributes	Ionic Migration
	Interfacial Stress and Stress Concentration
	Coating Method

New Types of Conformal Coatings by AI Technology, Inc

Topic

Rising Challenges for Conformal Coating

Conformal Coating Attributes	Hydrophobicity
	Water Absorption
	Moisture Barrier
	Gas Diffusion
	Ionic Migration
	Interfacial Stress and Stress Concentration
	Coating Method

New Types of Conformal Coatings by AI Technology, Inc

Challenges Extreme Conditions

Industrial electronics

Moisture and corrosive gas laden environments

Solar

Constant outdoor exposure to moisture rich environments

Maritime electronics

Salt water conditions and high moisture

Aeronautic electronics

Rapid and massive temperature fluctuation

The Rising Challenges

Difficult Operating Environments

Outdoor operation of commercial electronics And advancements in technology

- Modern cars and electric vehicles
- Autonomous vehicles
- Communication base stations
- Digital displays
- Mobile phones

AI Technology, Inc – Conformal Coating Webinar

Challenges IPC-CC-830C and Beyond

Environmental factors

- Moisture ingression
- Salt-fog ingression
- Fungi attack

Electrical insulation

- High dielectric strength
- High surface resistance
- Low ionic mobility

Beyond traditional protection

- Thickness: thin to ultrathin
- Barrier to corrosive gas permeation
- Salt-spray
- UV stability and protection
- Low interfacial shear stress and stress concentration

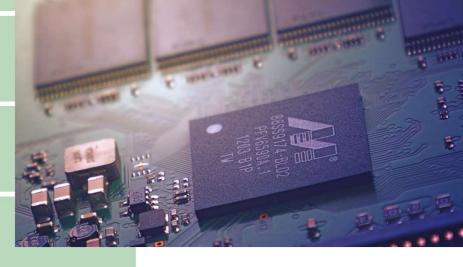
Challenges Testing and Requirements Beyond IPC-CC-830C

Large area circuit boards and induced stress

- Differential thermal expansion
- High profile components

Outdoor operation

- Industrial gas exposure
- Accelerated degradation


Extreme temperature swings

- Thermal shock
- Temperature cycle testing

Extensive salt-fog and salt-spray

- Aeronautic, industrial, maritime, automotive
- RCTA DO 160

Topic

Rising Challenges for Conformal Coating		
Conformal Coating Attributes	Hydrophobicity	
	Water Absorption	
	Moisture Barrier	
	Gas Diffusion	
	Ionic Migration	
	Interfacial Stress and Stress Concentration	
	Coating Method	

New Types of Conformal Coatings by AI Technology, Inc

Conformal Coating Attributes

Current Conformal Coatings and Contemporary Requirements

Seven conformal coating types per IPC-CC-830C

- Acrylic
- Silicone
- Polyurethane
- Paraxylylene
- Ероху
- Ultra-thin coating
- Styrene block co-polymer

5 Traditional Types of Conformal Coating Modern electronics demand superior moisture barrier, corrosive gas barrier, ionic migration prevention, stress mitigation, as well as cost effectivity and ease in application for commercial applications

No type of coating meets all demands, YET!

Later in this presentation

AI Technology, Inc. introduces two new types of conformal coatings for today's world

Conformal Coating Attributes

Properties Relevant to a Coating Meeting the Requirements

Requirements

Attributes

Modern electronics demand superior moisture barrier, corrosive gas barrier, ionic migration prevention, stress mitigation, as well as cost effectivity and ease in application for commercial applications Hydrophobicity

Water Absorption

Moisture Barrier

Corrosive Gas Diffusion

Ionic Migration

Interfacial Stress and Stress Concentration

Coating Method

Topic

Rising Challenges for Conformal Coating

	Hydrophobicity
	Water Absorption
Conformal	Moisture Barrier
Coating	Gas Diffusion
Attributes	Ionic Migration
	Interfacial Stress and Stress Concentration
	Coating Method

New Types of Conformal Coatings by AI Technology, Inc

Hydrophobicity Background

Hydrophobic coating
Low surface energy
Non-polar polymerWater
High surface energy
Polar moleculesIncompatibility results in
hydrophobic
characteristicsHydrophilic
Hydrophobic
Liquid

Hydrophobicity

Not Enough for Conformal Coating

High moisture barrier is more important

- Low moisture permeable
- Low moisture ingress through polymer free space

Example: Silicone type

- Greatest rate of moisture penetration
- Worst in moisture barrier
- Highly hydrophobic

Why?

Greatest free space volume

Topic

Rising Challenges for Conformal Coating		
Conformal Coating Attributes	Hydrophobicity	
	Water Absorption	
	Moisture Barrier	
	Gas Diffusion	
	Ionic Migration	
	Interfacial Stress and Stress Concentration	
	Coating Method	
Now Types of Conformal Costings by Al Technology Inc.		

New Types of Conformal Coatings by AI Technology, Inc

Water Absorption

Reflection of polymer polarity

Polar water has affinity to polar polymers

Lowest water absorption does not equate to best protection

Moisture may still penetrate coating

Coating	Acrylic: several times more water absorption than silicone
Application	Silicone: orders of magnitude greater water molecule penetration
Example	Acrylic types typically outperforms silicone types in PWB corrosion protection
/T	

Water Absorption Tabulation From Literature

Polymer Name	Min Value (% weight)	Max Value (% weight)
Acrylic-Based Conformal Coatings	0.10	0.40
Polyurethane-Based Conformal Coatings	0.10	0.40
Epoxy-Based Conformal Coatings	0.20	0.60
Silicone-Based Conformal Coatings	0.005	0.05
CC7130-PRTC	0.005	0.01
SC7130-CC	0.03	0.05

New Types from Al Technology, Inc

https://imageserv5.team-logic.com/mediaLibrary/99/D116_20Haibing_20Zhang_20et_20al.pdf https://omnexus.specialchem.com/polymer-properties/properties/water-absorption-24-hours

Topic

Rising Challenges for Conformal Coating				
Conformal Coating Attributes	Hydrophobicity			
	Water Absorption			
	Moisture Barrier			
	Gas Diffusion			
	Ionic Migration			
	Interfacial Stress and Stress Concentration			
	Coating Method			
Now Types of Conformal Coatings by Al Technology Inc				

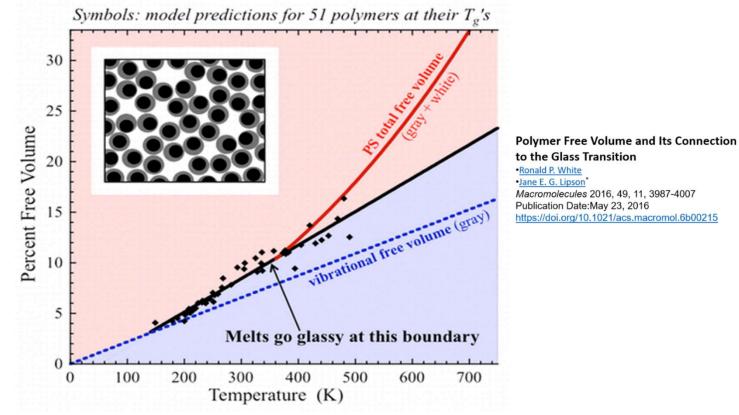
New Types of Conformal Coatings by AI Technology, Inc

Moisture Barrier Molecular Structure is Key

Greatest problem in current conformal coatings

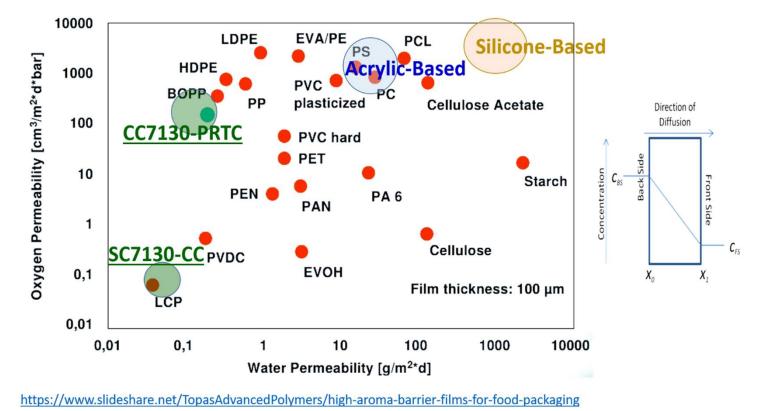
AIT coatings CC7130-PRTC and SC7130-CC address this issue

Phenomenological terms of polymeric structure


- Free space volume
- Average size of molecular free space: average pore size

Moisture permeability or transmission rate

- Molecular conformational and packing structure
- Affinity to moisture
- Temperature dependence


Moisture Barrier Molecular Structure is Key

AI Technology, Inc - Conformal Coating Webinar

Moisture Barrier

Торіс

Rising Challenges for Conformal Coating		
	Hydrophobicity	
	Water Absorption	
Conformal	Moisture Barrier	
Coating	Gas Diffusion	
Attributes	Ionic Migration	
	Interfacial Stress and Stress Concentration	
	Coating Method	
New Types of Conformal Coatings by AI Technology, Inc		

Gas Barrier Background

Molecular structure

- Free space volume
- Pore size

Gas Diffusion

- Fickian diffusion coefficient
- Thickness
- Temperature

Molecular structure

Smaller gas molecules – easier, faster penetration

KINETIC DIAMETER (SIZE) OF THE IMPORTANT GAS ELEMENTS THAT NEGATIVELY AFFECT THE LONG-TERM RELIABILITY OF PRINTED CIRCUIT BOARDS AND ELECTRONIC DEVICES

Permeant	Formula	Molecular Weight (g/mol)	Kinetic Diameter (m)	Reference
Helium	He	4.003	2.60x10 ⁻¹⁰	[Matteucci 2006, p.6]
Water	H ₂ O	18.015	2.65x10 ⁻¹⁰	[Ismail 2015, p.14]
Neon	Ne	20.180	2.75x10 ⁻¹⁰	[NPL 2016]
Hydrogen	H ₂	2.016	2.89x10 ⁻¹⁰	[Ismail 2015, p.14]
Nitric oxide	NO	30.006	3.17x10 ⁻¹⁰	[McKeen 2012, p.3]
Carbon dioxide	CO ₂	44.010	3.30x10 ⁻¹⁰	[Ismail 2015, p.14]
Argon	Ar	39.948	3.40x10 ⁻¹⁰	[McKeen 2012, p.3]
Oxygen	O2	31.999	3.46x10 ⁻¹⁰	[Ismail 2015, p.14]
Hydrogen sulfide	H ₂ S	34.080	3.60x10 ⁻¹⁰	[Matteucci 2006, p.6]
Nitrogen	N ₂	28.015	3.64x10 ⁻¹⁰	[Ismail 2015, p.14]
Carbon monoxide	CO	28.053	3.76x10 ⁻¹⁰	[Matteucci 2006, p.6]
Methane	CH ₄	16.043	3.80x10 ⁻¹⁰	[Ismail 2015, p.14]
Ethylene	C ₂ H ₄	28.05	3.90x10 ⁻¹⁰	[Matteucci 2006, p.6]
Xenon	Xe	131.293	3.96x10 ⁻¹⁰	[McKeen 2012, p.3]
Sulfur Dioxide	SO ₂	64.064	4.29x10 ⁻¹⁰	[NPL 2016]
Propane	C ₃ H ₈	44.096	4.30x10 ⁻¹⁰	[Matteucci 2006, p.6]
n-Butane	C4H10	58.122	4.30x10 ⁻¹⁰	[McKeen 2012, p.3]
Chlorine	Cl ₂	70.906	4.40x10 ⁻¹⁰	[NPL 2016]
Difluorodichloromethane	CF ₂ Cl ₂	120.914	4.40x10 ⁻¹⁰	[McKeen 2012, p.3]
Propylene	C ₃ H ₆	42.080	4.50x10 ⁻¹⁰	[Matteucci 2006, p.6]
Tetrafluoromethane	C ₄ F	67.041	4.70x10 ⁻¹⁰	[McKeen 2012, p.3]
i-Butane	C ₄ H ₁₀	58.122	5.00x10 ⁻¹⁰	[McKeen 2012, p.3]
Benzene	C ₆ H ₆	78.112	5.85x10 ⁻¹⁰	[Li 1993, p.373]

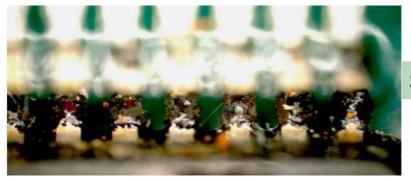
Gas Barrier Importance to Conformal Coating 6.0E-10 C₆H₆ 5.5E-10 C₄H₁₀(i-butane) 5.0E-10 Kinetic Diamter (m) ◆ C₄F C₃H 4.5E-10 Cl, CF₂CI SO- C_3H_8 C_4H_{10} (n-butane) Xe 4.0E-10 3.5E-10 CO₂ NO 3.0E-10 H, Ne ♦ He H₂O 2.5E-10

0

Damaging effects

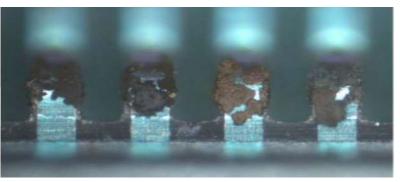
- Copper
- Tin metallization

Especially relevant gases


- Moisture
- Nitrogen oxide
- Carbon dioxide
- Hydrogen sulfide
- Sulfur dioxide
- Chlorine

https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26070.pdf AI Technology, Inc – Conformal Coating Webinar

10 20 30 40 50 60 70 80 90 100 110 120 130 140


Molecular Weight (g/mol)

Gas Barrier Examples of Harmful Gas Damage

Silicone Type

Ultra-Thin Al₂O₃ Coating

Effectiveness of Conformal Coat to Prevent Corrosion of Nickel-palladium-gold-finished Terminals by Michael Osterman, http://www.circuitinsight.com/pdf/effectiveness conformal coat prevent corrosion nickel palladium _gold ipc.pdf

Topic

Rising Challenges for Conformal Coating		
	Hydrophobicity	
	Water Absorption	
Conformal	Moisture Barrier	
Coating	Gas Diffusion	
Attributes	Ionic Migration	
	Interfacial Stress and Stress Concentration	
	Coating Method	
New Types of Conformal Coatings by AI Technology, Inc		

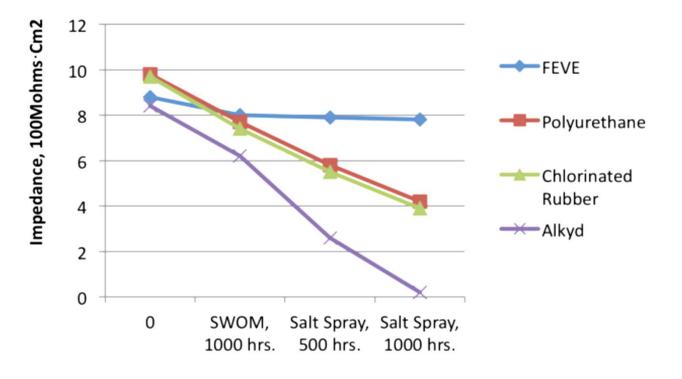
Ionic Migration Background and Importance

Ionic Contaminants

- Salt-spray and salt-fog environments
- Improper cleaning before coating

Electric fields drive ionic migration

Leads and components generate E-Field


Degradation to circuit impedance

Growing challenge

- High frequency devices
- Extreme proximity of components
- Rise of 5G with fine-pitch components

Ionic Migration Impedance Degradation

https://www.aisc.org/globalassets/nsba/conference-proceedings/2018/2018-wsbs-final-paper---darden.pdf

Ionic Migration

Salt-spray testing not used by IPC-CC-830C

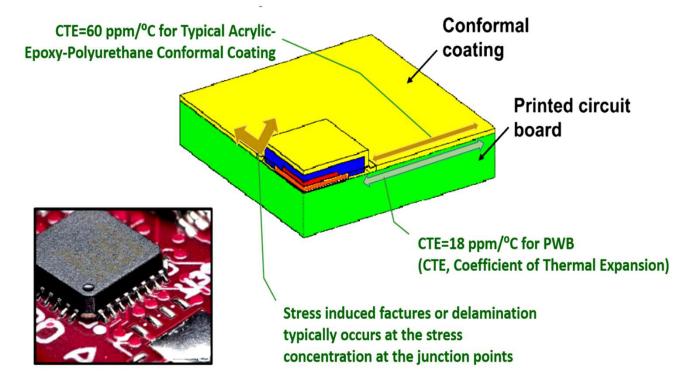
Stringent testing relevant to

Aeronautic Marine Industrial Automotive

SC7130-CC: unparalleled advantage over acrylic based on RTCA DO 160

Торіс

Rising Challenges for Conformal Coating		
	Hydrophobicity	
	Water Absorption	
Conformal	Moisture Barrier	
Coating	Gas Diffusion	
Attributes	Ionic Migration	
	Interfacial Stress and Stress Concentration	
	Coating Method	
New Types of Conformal Coatings by AI Technology, Inc		


New Types of Conformal Coatings by AI Technology, Inc

Interfacial Stress and Stress Concentration Causes

Differential CTE induces stress on conformal coating and stress concentration at sharp interfaces			
PCB Planar CTE 16-20 ppm/ ^o C Z-axis CTE > 70 ppm/ ^o C	 Conformal Coatings Acrylic and epoxy types: CTE 55 – 65 ppm/ºC Parylene type: CTE ~ 35 ppm/ºC 		
Operating temperatures different from curing temperatures induce stress	Compressive stress: excursions below cure temperature Tensile stress: excursions above cure temperature		
Higher modulus of conformal coating increases tensile and compressive stress			
AI Technology, Ir	Inc – Conformal Coating Webinar 31		

Interfacial Stress and Stress Concentration Pictorial Representation

Computational Models: A Critical Enabler of Advanced Electronic Packaging for Use in High-Reliability Applications, Paul T. Vianco https://www.osti.gov/servlets/purl/1507040

Interfacial Stress and Stress Concentration

Solution: Flexible, Stress-Free Conformal Coating

Without ability to match CTE, coating must have

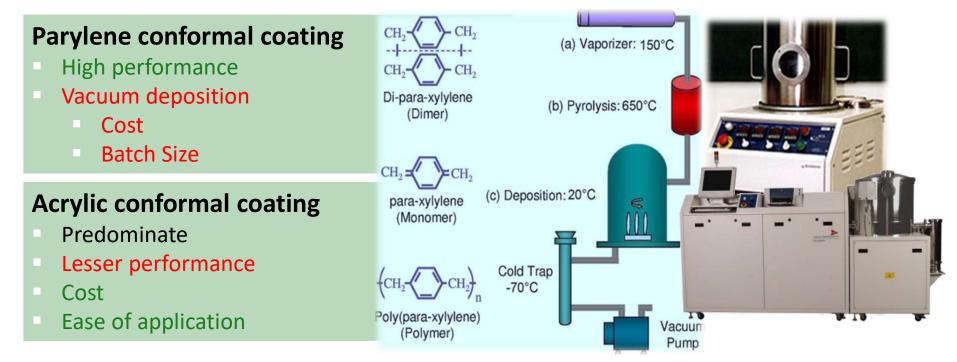
Low modulus

Capability to stretch

CC7130-PRTC and SC7130-CC

molecularly engineered with low modulus and high flexibility

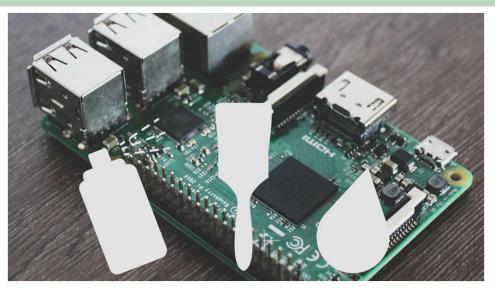
to not induce shear, compressive stresses, and stress concentration.


Торіс

Rising Challenges for Conformal Coating			
Conformal	Hydrophobicity		
	Water Absorption		
	Moisture Barrier		
Coating	Gas Diffusion		
Attributes	Ionic Migration		
	Interfacial Stress and Stress Concentration		
	Coating Method		
New Types of Conformal Coatings by AI Technology, Inc			

Coating Method

Vacuum Deposition Limits Possibilities



Coating Method Ease of Application

Ideal Conformal Coating

- Industrial standard spray-brush-dip coating method
- Performance equivalent to Parylene

Topic

Rising Challenges for Conformal Coating		
Conformal Coating Attributes	Hydrophobicity	
	Water Absorption	
	Moisture Barrier	
	Gas Diffusion	
	Ionic Migration	
	Interfacial Stress and Stress Concentration	
	Coating Method	

New Types of Conformal Coatings by AI Technology, Inc

New Types of Conformal Coatings by AIT CC7130-PRTC & SC7130-CC

Molecularly Engineered Polymer Structure

- CC7130-PRTC: Modified Ethylene
- SC7130-CC: Fluorinated Polymer

Hydrophobic Superior Moisture Barrier

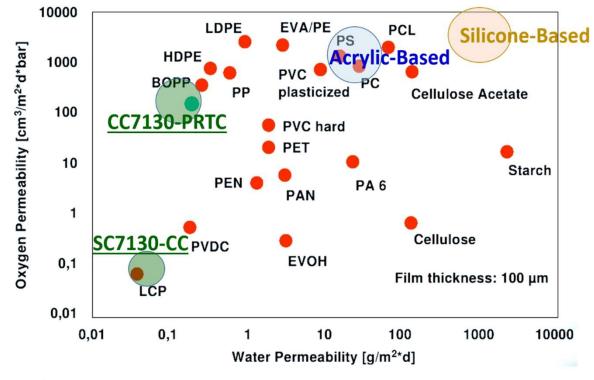
Harmful Gas Barrier

Ionic Migration Prevention

Flexible & Stress-Free

Spray-Dip-Brush Coating Method

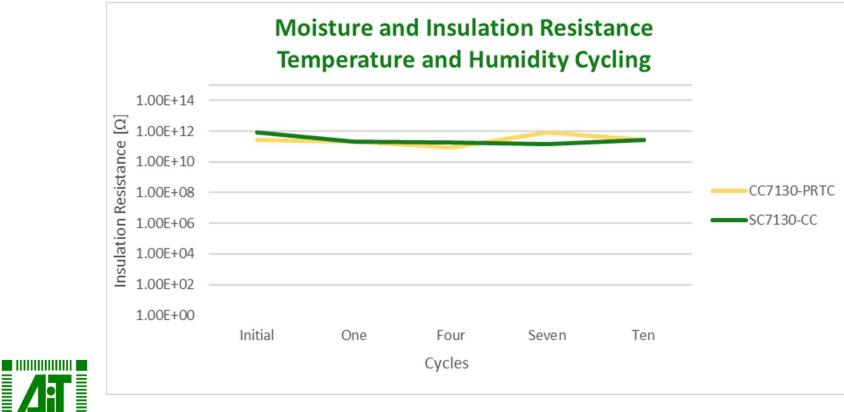
New Types of Conformal Coatings by AIT


Polymer Name	Min Value (% weight)	Max Value (% weight)
Acrylic-Based Conformal Coatings	0.10	0.40
Polyurethane-Based Conformal Coatings	0.10	0.40
Epoxy-Based Conformal Coatings	0.20	0.60
Silicone-Based Conformal Coatings	0.005	0.05
CC7130-PRTC	0.005	0.01
SC7130-CC	0.03	0.05

New Types from Al Technology, Inc

https://imageserv5.team-logic.com/mediaLibrary/99/D116_20Haibing_20Zhang_20et_20al.pdf https://omnexus.specialchem.com/polymer-properties/properties/water-absorption-24-hours

New Types of Conformal Coatings by AIT



AI Technology, Inc – Conformal Coating Webinar

New Types of Conformal Coatings by AIT Strong Adhesion

AI Technology, Inc – Conformal Coating Webinar

AI Technology, Inc – Conformal Coating Webinar

Customer Feedback on AIT Conformal Coating

AI Technology customers have found that AIT coatings are the only ones that worked for their high performance application. The following are excerpts from customer feedback:

- "...the penetration of water vapor into the printed circuit assembly from high humidity conditions is blocked sufficiently to avoid the destabilization experienced with those other conformal coating products previously used...."
- "...We had **good success** when brushing or dipping with the coating as supplied in the sample you provided...."
- "...It is our conformal coating of choice. It probably **should be the choice** for **many electronic assemblies** that may be adversely affected by moisture absorption."

- "...We intend to use [AIT coatings] in **ongoing** production..."
- *"... strong non-hygroscopic properties* even with long exposure to humidity of 90% RH (Relative Humidity) and greater...."
- "... other conformal coatings indicated that they possessed great hydrophobic properties... those resisting the moisture absorption are much less common. We did much testing, using our own printed circuit assemblies as our primary instrument.... properties [of AIT coating] proved to be outstanding.

New Types of Conformal Coatings by AIT

SC7130-CC IPC-CC-830C Independent Lab Test Results

Test	Procedure-Method	Requirements/Comments	Results	
Coating Thickness (Spray and Dip Coating Method)		Thickness: Min. 12.5μm; Max. 50μm in meeting all requirements for "Parylene Classification" of performance. All other classes need heavier coating.	PASS	
Visual inspection	On glass plate under white and UV light	Coating must have uniform appearance and consistency	PASS	
Fluorescence	On glass plate under black (UV) light	Coating must fluoresce under UV black light (typical wavelength 365nm)	PASS	
Fungus resistance	IPC-TM-650 section 2.6.1.1 on glass plate	Not attacked by biological growth		
UL 94 test strip for flammability	UL 94 HB	Must meet a minimum horizontal burning test	PASS; V-0 Self- Extinguishing	
Flexibility	IPC-TM-650 section 2.4.5.1 on tin panel	No evidence of cracking or crazing of the cured coating	PASS	
Dielectric Withstanding Voltage	IPC-TM-650 sec. 2.5.7.1 on IPC-B-25A Test Board	No disruptive discharge, sparkover, or breakdown. @1500VAC, Max 10 uA leakage rate; Pattern D insulation resistance >10 ¹² Ω	PASS	
Moisture and Insulation Resistance		Minimum 500M Ω for ER and 5G Ω for all other types after exposure to humidity within 1-2hours of exposure; Insulation resistance post moisture exposure: >10 ¹¹ Ω = before exposure (No Degradation)	PASS, Meets Requirements for "Parylene Type"	
Thermal Shock	IPC-TM-650 section 2.6.7.1 on IPC-B-25A	Appearance and Dielectric Withstand Voltage after testing must meet the above- mentioned passing levels	PASS	
Temperature and Humidity Aging	IPC-TM-650 sect. 2.6.11.1 on "Y Panel" test coupon	No evidence of softening, tack, cracking, loss of adhesion, or reversion	PASS	
New Type of Conformal Coating from AI Technology, Inc.	 SC7130-CC is a new class of thin conformal coating with molecular structure of fluorinated polymer for hydrophobic and moisture barrier Designed for low cost spray-dip-brush coating methods to achieve 12.5-50µm thickness The strong and tight molecular stability is engineered for extreme conditions including salt-fog, salt-water, acid rain, and corrosive environments This Parylene replacement conformal coating has been proven to outperform all traditional conformal coating in more stringent Radio Technical Commission for Aeronautics (RTCA DO 160) applications 			

SC7130-CC Per IPC-CC-830C Independent Lab Certification Results

New Types of Conformal Coatings by AIT

CC7130-PRTC IPC-CC-830C Independent Lab Test Results

	CC7130-PRTC Per	IPC-CC-830C Independent Lab Certification Results	
Test	Procedure-Method	Requirements/Comments	Results
Coating Thickness (Spray and Dip Coating Method)	Thickness measurement	Thickness: Min. 12.5µm; Max. 50µm in meeting all requirements for "Parylene Classification" of performance. All other classes need heavier coating.	PASS
Visual inspection	On glass plate under white and UV light	Coating must have uniform appearance and consistency	PASS
Fluorescence	On glass plate under black (UV) light	Coating must fluoresce under UV black light (typical wavelength 365nm)	PASS
Fungus resistance	IPC-TM-650 section 2.6.1.1 on glass plate	Not attacked by biological growth	PASS
UL 94 test strip for flammability	UL 94 HB	Must meet a minimum horizontal burning test	PASS
Flexibility	IPC-TM-650 section 2.4.5.1 on tin panel	No evidence of cracking or crazing of the cured coating	PASS
Dielectric Withstanding Voltage	IPC-TM-650 sec. 2.5.7.1 on IPC-B- 25A Test Board	No disruptive discharge, sparkover, or breakdown. 1500VAC, Max 10 uA leakage rate; Pattern D insulation resistance ${>}10^{12}\Omega$	PASS
Moisture and Insulation Resistance	IPC-TM-650 section 2.6.3.4 on IPC- B-25A	Minimum 500M Ω for ER and 5G Ω for all other types after exposure to humidity within 1-2hours of exposure; Insulation resistance post moisture exposure: >10 ¹¹ Ω = before exposure (No Degradation)	PASS, Meets Requirements for "Parylene Type"
Thermal Shock	IPC-TM-650 sec. 2.6.7.1 on IPC-B- 25A	Appearance and Dielectric Withstand Voltage after testing must meet the above-mentioned passing levels	PASS
Temperature and Humidity Aging	IPC-TM-650 sec. 2.6.11.1 on "Y Panel" test coupon	No evidence of softening, tack, cracking, loss of adhesion, or reversion	PASS
New Type of Conformal Coating from Al Technology, Inc.	hydrophobicity and moist Designed for low cost spr	ay-dip-brush coating methods to achieve 25-50µm thickness It conformal coating is molecularly engineered for extreme conditions includi	

New Types of Conformal Coatings by AIT Physical and Electrical Properties of SC7130-CC and CC7130-PRTC

PHYSICAL CHARACTERISITCS OF SC7130-CC		PHYSICAL CHARACTERISITCS OF CC7130-PRTC			
ELECTRICAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS	ELECTRICAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS
Dielectric Strength	0.8	KV/mil	Dielectric Strength	0.7	KV/mil
Dielectric Constant (1 MHz)	3.9		Dielectric Constant (1 MHz)	2.9	
Dielectric Loss (1 MHz)	0.03		Dielectric Loss (1 MHz)	0.01	
Volume Resistivity	1.8x10 ¹⁴	ohm-cm	Volume Resistivity	1.2x10 ¹⁴	ohm-cm
SAFETY OF FLAMMABILITY	STANDARD AND CONDITIONS (@25°C)	RATING	SAFETY OF FLAMMABILITY	STANDARD AND CONDITIONS (@25℃)	RATING
Flammability	UL 94	HB and V-0	Flammability	UL 94	HB and V-0
THERMAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS	THERMAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS
Glass Transition Temperature (Tg)	-45	°C	Glass Transition Temperature (Tg)	-55	°C
"Melting Point"	>120	°C	"Melting Point"	>110	°C
Coefficient of Thermal Expansion	95	ppm/°C	Coefficient of Thermal Expansion	105	ppm/°C
Thermal Conductivity	1	BTU-IN/hr-ft²-°F	Thermal Conductivity	0.6	BTU-IN/hr-ft ² - ^o F
Thermal Decomposition	>350 (1% Weight Loss in Air)	°C	Thermal Decomposition	>330 (1% Weight Loss in Air)	°C
MECHANICAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS	MECHANICAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS
Hardness	50	Shore D	Hardness	65	Shore A
Tensile Modulus	40,000/(275)	psi/(Mpa)	Tensile Modulus	20000/(138)	psi/(Mpa)
Flexual Modulus	30,000/(206)	psi/(Mpa)	Flexual Modulus	15,000/(103)	psi/(Mpa)
Tensile Elongation	300	%	Tensile Elongation	250	%
OPTICAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS	OPTICAL PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS
Refractive Index (D542)	1.43		Refractive Index (D542)	1.5	
WATER-MOISTURE PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS	WATER-MOISTURE PROPERTIES	STANDARD AND CONDITIONS (@25°C)	UNITS
Water Absorption (D570)	<0.01	%	Water Absorption (D570)	<0.03	%
	Typical Acrylic (>0.4)	%		Typical Acrylic (>0.4)	%
Water Permeability	0.0009	(gm.mm/m².d) @ 1atm	Water Permeability	<0.05	(gm.mm/m².d) @ 1atm
	Typical Acrylic (>5.2)	(gm.mm/m².d) @ 1atm		Typical Acrylic (>5.2)	(gm.mm/m ² .d) @ 1atm

Thank you! Any Questions?

To learn more please go to: aitechnology.com/products/conformal-coatings

Visit us on the web: **www.aitechnology.com** Send us an email**: ait@aitechnology.com** Give us a call: **1-(609)-799-9388**

